Connexion

Récupérer mon mot de passe

Sablier des maisons
    68 points
    257 points
    289 points
    91 points
Rechercher
 
 

Résultats par :
 


Rechercher Recherche avancée

Les posteurs les plus actifs de la semaine
Merlin-Myrddin
 
Dudley BeauPommier
 
Kendra Dumbledore
 

Février 2018
LunMarMerJeuVenSamDim
   1234
567891011
12131415161718
19202122232425
262728    

Calendrier Calendrier


Cours du 05/12/2017 : Thème 1 : les atomes principaux : 2. Hélium

Aller en bas

Cours du 05/12/2017 : Thème 1 : les atomes principaux : 2. Hélium

Message par Legolas.Vertefeuille le Mar 5 Déc - 23:06

Thème 1 : les atomes principaux
Chapitre 2 : L'Hélium

Informations utiles

Nom : Hélium
Symbole : He
Numéro atomique : 2
Famille d'éléments : gaz noble
Masse volumique : 0,1786 g/L (0 °C, 1 atm), 0,125 kg/L (liquide, −268,93 °C)
Couleur : incolore
Masse atomique : 4,002602 u
Configuration électronique : 1s²
Electrons par niveau d'énergie : 2
Etat d'oxydation : 0
Système cristallin : hexagonal compacte
Etat ordinaire : gaz
Point de fusion : 0,95 K (26 atm)
Point d'ébullition : -268,93 °C
Température critique : -267,96 °C
Pression critique : 2,26 atm
Volume molaire : 22,414 ×10−3 m³/mol
Vitesse du son : 972 m/s
Chaleur massique : 20,79 J/mol·K
Dangers : gaz sous pression

Généralités

L'hélium est l'élément chimique de numéro atomique 2, de symbole He. C'est un gaz noble (ou gaz rare), pratiquement inerte, le premier de la famille des gaz nobles dans le tableau périodique des éléments. Son point d'ébullition est le plus bas parmi les corps connus, et il n'existe sous forme solide qu'au-dessus d'une pression de 25 atm.

L'hélium possède deux isotopes stables : 4He, le plus abondant, et 3He. Ces deux isotopes, contrairement à ceux de la plupart des éléments chimiques, diffèrent sensiblement dans leurs propriétés, car le rapport de leurs masses atomiques est important. D'autre part, les effets quantiques, sensibles à basse énergie, leur donnent des propriétés très différentes. Le présent article traite essentiellement de l'hélium 4 (4He). L'article Hélium 3 compile les propriétés spécifiques de l'isotope 3He.

Le mot hélium a été construit à partir du grec Helios (Ἥλιος / Hếlios, « le Soleil »), cet élément ayant été observé pour la première fois dans le spectre solaire le 18 août 1868, au cours d'une éclipse totale de Soleil, par l'astronome Jules Janssen.

L'hélium est, après l'hydrogène, l'élément le plus abondant de l'Univers. L'essentiel de cet hélium a été produit lors de la nucléosynthèse primordiale mais d'autres processus en produisent, notamment la radioactivité α (cf. sous-section Abondance naturelle). Sur la Terre, selon une estimation du Bureau of Land Management des États-Unis de 2006, les ressources d'hélium totalisent 52 milliards de mètres cubes.

L'hélium a divers usages en forte croissance, alors que la production industrielle a diminué pour des raisons conjoncturelles : sa raréfaction devient inquiétante. Ceci dit, en 2016, d'un point de vue économique le marché de l'hélium est calme et il est récemment passé de la pénurie au surplus.

Isotopes et propriétés nucléaires

On connait huit isotopes de l'hélium. L'hélium 3 (deux protons et un neutron) et l'hélium 4 (deux protons et deux neutrons) sont stables, les autres sont extrêmement instables, certains n'existant virtuellement que lors de leur formation. Dans l'atmosphère terrestre, il n'y a qu'un atome d'hélium 3 pour environ un million d'atomes d'hélium 4. Contrairement à la plupart des éléments, l'abondance isotopique de l'hélium varie considérablement selon son origine, en raison des processus de formation différents. L'isotope le plus abondant, l'hélium 4, est produit sur Terre par la radioactivité α d'éléments lourds : les particules α qui y sont produites sont des noyaux d'hélium 4 complètement ionisés. L'hélium 4 est un noyau à la stabilité inhabituelle, parce que ses nucléons sont arrangés en couches complètes.

À l'échelle de l'Univers, la grande partie de l'hélium présent a été formé (en quantités énormes, environ 25 % de toute la matière) lors de la nucléosynthèse primordiale. Quasiment tout le reste de l'hélium produit dans l'Univers l'est (ou l'a été) lors de la nucléosynthèse stellaire.

L'hélium 3 n'est présent sur Terre qu'à l'état de traces ; la plupart date de la formation de la Terre, bien qu'un peu tombe encore dessus, piégé dans la poussière interstellaire. Des traces sont aussi produites encore par la radioactivité β du tritium. Les roches de la croûte terrestre ont des rapports isotopiques variant jusqu'à un facteur 10 et ces rapports peuvent être utilisés pour la détermination de l'origine des roches et la composition du manteau terrestre. L'hélium 3 est bien plus abondant dans les étoiles, mais bien qu'il soit produit lors de la fusion nucléaire, les étoiles n'en relâchent que très peu (comme le deutérium et le lithium, ou le bore) car il n'apparait que dans une chaine intermédiaire menant à l'hélium 4 : il est « consommé » au fur et à mesure de sa production dans les étoiles. Par suite, dans le milieu interstellaire, le rapport isotopique est environ 100 fois plus élevé que sur Terre. Les matériaux extraplanétaires, comme le régolithe de la Lune ou des astéroïdes, ont des traces d'hélium 3 provenant du vent solaire. La surface de la Lune en contient une concentration de l'ordre de 10-8 . Un certain nombre d'auteurs, commençant par Gerald Kulcinski en 1986, ont proposé d'explorer la Lune, d'extraire l'hélium 3 du régolithe et de l'utiliser pour produire de l'énergie par fusion nucléaire.

Le corps simple d'Hélium

L'hélium est un gaz incolore, inodore et non toxique. Il est pratiquement inerte chimiquement, monoatomique en toute circonstance. Dans un vaste domaine de températures et de pressions, il se comporte expérimentalement comme un gaz parfait, ce qui en fait une substance privilégiée pour l'expérimentation des théories physico-chimiques. Les 2 isotopes stables de l'hélium sont les seuls composés chimiques à ne pas posséder de point triple.

L'hélium 4 peut être refroidi jusqu'à environ 1 K par évaporation. L'hélium 3, qui a un point d'ébullition inférieur, peut être refroidi jusqu'à 0,2 K par la même méthode. Des mélanges à parts égales d'hélium 3 et 4 se séparent, au-dessous de 0,8 K, car ils ne sont plus miscibles, en raison de leurs différences (l'atome d'hélium 4 étant un boson tandis que l'atome d'hélium 3 est un fermion, ils suivent deux statistiques quantiques différentesN 1). Les réfrigérateurs à dilution utilisent cette propriété pour atteindre quelques millikelvins.

On peut fabriquer par réactions nucléaires d'autres isotopes de l'hélium, qui sont instables, et se désintègrent rapidement vers d'autres noyaux. L'isotope dont la demi-vie la plus courte, si on peut même parler d'isotope dans ce cas, est l'hélium 2 (2 protons, sans neutron : le diproton, qui se désintègre en deux protons en 3 × 10−27 s). L'hélium 5 et l'hélium 7 se désintègrent par émission d'un neutron, avec une demi-vie de 7,6 × 10−23 s et 2,9 × 10−21 s, respectivement. L'hélium 6 et l'hélium 8 se désintègrent par radioactivité β, avec une demi-vie de 0,8 s et 0,119 s, respectivement. Les isotopes 6 et 8 ont une structure lâche, dans laquelle des neutrons orbitent loin du cœur, ce que l'on appelle halo nucléaire.

Gaz

La conductivité thermique de l'hélium gazeux est supérieure à celle de tous les gaz, sauf l'hydrogène, et sa chaleur spécifique est exceptionnellement élevée. Son coefficient Joule-Thomson est négatif à température ambiante, ce qui signifie que, contrairement à la plupart des gaz, il se réchauffe lorsqu'il peut se détendre librement. La température d'inversion de Joule-Thomson est d'environ 40 K soit −233,15 °C à la pression d'1 atm. Une fois refroidi en dessous de cette température, l'hélium peut être liquéfié par le refroidissement dû à sa détente.

L'hélium est aussi le gaz le moins hydrosoluble de tous les gaz connus. En raison de la petite taille de ses atomes, sa vitesse de diffusion à travers les solides est égale à trois fois celle de l'air et environ 65 % celle de l'hydrogène.

L'indice de réfraction de l'hélium est plus proche de l'unité que celui de n'importe quel autre gaz. La vitesse du son dans l'hélium est supérieure à celle dans tout autre gaz, sauf l'hydrogène.

Contrairement au plasma, le gaz est un excellent isolant électrique.

Plasma

La plupart de l'hélium extraterrestre se trouve dans l'état de plasma, dont les propriétés diffèrent notablement de celles de l'hélium atomique. Dans le plasma, les électrons de l'hélium ne sont pas liés au noyau, ce qui conduit à une très grande conductivité électrique, même quand l'ionisation est partielle. Les particules chargées sont très sensibles aux champs électrique et magnétique. Par exemple, dans le vent solaire, l'hélium et l'hydrogène ionisés interagissent avec la magnétosphère terrestre, donnant lieu aux phénomènes de courants de Birkeland et aux aurores polaires.

Comme les autres gaz nobles, l'hélium a des niveaux d'énergie métastables qui lui permettent de rester excité dans une décharge électrique dont la tension est inférieure à son potentiel d'ionisation. Ceci permet son utilisation dans les lampes à décharge.

Liquide

Contrairement aux autres éléments, l'hélium reste liquide jusqu'au zéro absolu, à des pressions inférieures à 25 atm. Ceci est une conséquence directe de la mécanique quantique : plus précisément l'énergie des atomes dans l'état fondamental du système est trop élevée pour permettre la solidification.

Au-dessous du point d'ébullition à 4,22 K et au-dessus du point lambda à 2,1768 K, l'hélium 4 existe sous forme d'un liquide normal incolore, appelé hélium I. Comme les autres liquides cryogéniques, il bout quand il est chauffé et se contracte quand sa température est abaissée. L'hélium I a un indice de réfraction voisin de celui des gaz : 1,026 ; ce qui rend sa surface tellement difficile à apercevoir que l'on utilise souvent des flotteurs de mousse de polystyrène pour voir son niveau. Ce liquide incolore a une viscosité très faible et une densité de 0,125 = 1/8, ce qui n'est qu'un quart de la valeur prévue par la physique classique. Il faut recourir à la mécanique quantique pour expliquer cette propriété et donc l'hélium liquide sous ses diverses formes est appelé fluide quantique, pour signifier que les effets de la mécanique quantique, normalement sensibles seulement à l'échelle microscopique, se manifestent à l'échelle macroscopique car l'atome d'hélium 4 est un boson. Ceci s'interprète comme une conséquence du fait que le point d'ébullition est si rapproché du zéro absolu que les mouvements thermiques aléatoires ne peuvent plus masquer les propriétés atomiques.

Solide

L'hélium ne se solidifie que sous l'effet de fortes pressions. Le solide pratiquement invisible et incolore qui en résulte est fortement compressible ; une compression en laboratoire peut réduire son volume de plus de 30 %. Avec un module d'élasticité cubique de l'ordre de 5 × 107 Pa, il est cinquante fois plus compressible que l'eau. Dans des conditions normales de pression, et à l'inverse des autres éléments, l'hélium ne se solidifie pas et reste liquide jusqu'au zéro absolu. L'hélium solide nécessite une pression minimale d'environ 26 atm. Il est souvent assez difficile de distinguer l'hélium solide de l'hélium liquide, leurs indices de réfraction étant presque identiques. Le solide a une chaleur latente (chaleur de fusion) élevée et une structure cristalline hexagonale, comme celle de l'eau.

Propriétés chimiques

Avec le néon, l'hélium est chimiquement le moins réactif de tous les corps dans les conditions normales, en raison de sa valence égale à 0. Il peut néanmoins former des composés instables (excimères) avec le tungstène, l'iode, le fluor, le soufre et le phosphore en phase plasma, par décharge ou d'une autre manière. HeNe, HgHe10, WHe2 et les ions moléculaires He2+, He2++, HeH+, HeD+ ont été créés de cette manière. Cette technique a aussi permis la production de la molécule neutre He2, qui possède un plus grand nombre de systèmes de bandes, et HgHe, dont la cohésion ne semble reposer que sur des forces de polarisation. Théoriquement, d'autres composants comme le fluorohydrure d'hélium (HHeF) sont également possibles.

Les premiers composés stables de l'hélium prouvés sont des complexes endoédriques de fullerènes, comme He@C60, qui désigne un atome d'hélium emprisonné dans une cage de fullerène C60. Depuis, il a été montré qu'à très haute pression (supérieure à 113 GPa) il est possible de former un composé stable de l'hélium et du sodium, Na2He. De telles molécules pourraient également se trouver dans les planètes géantes à la pression élevée comme Jupiter et Saturne.

Propriétés biologiques

L'hélium, neutre, dans les conditions standard, est non-toxique, ne joue aucun rôle biologique et on en trouve à l'état de traces dans le sang humain. Si l'on en inhale assez pour que le dioxygène nécessaire à une respiration normale soit déplacé, l'asphyxie devient possible.

Inhalation

La voix d'un individu qui a inhalé de l'hélium change temporairement de timbre vers les harmoniques élevés — l'hélium étant trois fois moins dense que l'air, la vitesse du son devient ainsi plus élevée — et comme la fréquence fondamentale d'une cavité remplie de gaz est proportionnelle à la vitesse du son, l'inhalation d'hélium correspondra à une augmentation des fréquences de résonance de l'appareil phonatoire qui modulent la fréquence fondamentale donnée par les cordes vocales. Un effet opposé, de baisse de timbre, peut être obtenu en inhalant un gaz plus dense, comme l'hexafluorure de soufre.

L'inhalation d'hélium pur à faible dose est normalement sans danger car il s'agit d'un gaz inerte. Cependant l'utilisation d'hélium vendu en commerce, comme celui utilisé pour gonfler des ballons, peut être dangereuse en raison des nombreux contaminants qu'il peut contenir, traces d'autres gaz, ou aérosols d'huile lubrifiante.

L'inhalation d'hélium en excès peut être dangereuse, puisque l'hélium est simplement un asphyxiant, qui remplace le dioxygène nécessaire à une respiration normale. La respiration d'hélium pur provoque l'asphyxie en quelques minutes. L'inhalation de l'hélium directement à partir de cylindres sous pression est extrêmement dangereuse, en raison du fort débit, qui peut produire un barotraumatisme qui déchire le tissu pulmonaire et peut être fatal. Cependant cet accident est assez rare, puisqu'on ne compte que deux décès entre 2000 et 2004 aux États-Unis.

À haute pression (plus de 20 atm ou 2 MPa), un mélange d'hélium et de dioxygène (héliox) peut conduire à un syndrome nerveux des hautes pressions, une espèce d'effet contre-anesthésique. En ajoutant un peu de diazote au mélange, on peut éviter le problème. Néanmoins, en plongée subaquatique, le syndrome nerveux des hautes pressions ne peut être contrecarré que par l'adjonction d'hydrogène, l'ajout de diazote étant hautement narcotique dès que la pression totale atteint 5 bars.

Usages scientifiques

L'utilisation de l'hélium réduit les effets de distorsion dus aux variations de température dans l'espace séparant les lentilles de certains télescopes ou lunettes, en raison de son indice de réfraction exceptionnellement bas. Cette méthode est spécialement utilisée pour les télescopes solaires, soumis à des variations importantes de température, mais pour lesquels une enceinte supportant la différence de pression entre l'atmosphère et le vide serait trop lourde.

L'âge des roches et minéraux qui contiennent de l'uranium et du thorium peut être estimé en mesurant leur contenu en hélium par un procédé appelé datation à l'hélium.

L'hélium liquide est aussi utilisé pour refroidir certains métaux aux températures extrêmement basses nécessitées pour la supraconductivité, par exemple pour les aimants supraconducteurs utilisés notamment pour les détecteurs à IRM. Le LHC au CERN utilise 96 t d'hélium liquide pour maintenir la température des aimants à 1,9 K. De façon plus générale, l'hélium à basse température est utilisé en cryogénie.

Abondance naturelle

L'hélium est le deuxième élément le plus abondant dans l'Univers connu après l'hydrogène et en constitue 23 % de la masse baryonique. La grande majorité de l'hélium a été formée par la nucléosynthèse primordiale, dans les minutes suivant le Big Bang. C'est pourquoi la mesure de son abondance contribue à fixer certains paramètres des modèles cosmologiques. Dans la majeure partie de l'existence des étoiles, il est formé par la fusion nucléaire de l'hydrogène. En fin de vie, les étoiles utilisent l'hélium comme matière première pour la création d'éléments plus lourds, par des processus bien plus rapides, voire explosifs. Au bout du compte, l'hélium de l'Univers ne provient qu'en très faible partie des étoiles.

Dans l'atmosphère terrestre, la concentration de l'hélium est 5,2 × 10−6 en volume. Cette basse concentration est assez constante dans le temps, en raison d'un équilibre entre la production continue d'hélium dans les roches et la fuite vers l'espace par divers mécanismes. Dans l'hétérosphère terrestre, une partie de la haute atmosphère, l'hélium et autres gaz légers sont les constituants les plus abondants.

Presque tout l'hélium sur Terre provient de la radioactivité α. On le trouve principalement dans les composés d'uranium et de thorium, notamment la pechblende, la carnotite et la monazite, parce qu'ils émettent des particules α, qui sont des noyaux d'hélium ionisé He2+, qui se neutralisent immédiatement avec des électrons. On estime à 3 000 t l'hélium ainsi produit chaque année dans la lithosphère. Dans la croûte terrestre, la concentration de l'hélium est 8 × 10−6 en volume. Dans l'eau de mer, elle n'est que de 4 × 10−12. Il y en a aussi de petites quantités dans les eaux minérales, les gaz volcaniques et le fer météorique. Comme l'hélium est piégé comme le gaz naturel par les couches de roches imperméables, on trouve les plus hautes concentrations d'hélium dans les gisements de gaz naturel, d'où l'on extrait la plupart de l'hélium commercial. Sa concentration en volume par rapport au gaz naturel varie de quelques parties par million à une concentration de 7 % identifiée dans le comté de San Juan, Nouveau-Mexique.

En 2016, une société dénommée « Hélium » dit avoir identifié trois possibles champs massifs de cet élément en Tanzanie, assez vastes - selon elle - pour approvisionner le monde durant plusieurs décennies, et ce pourquoi elle recherche 40 millions de dollars d'investissements pour tenter un forage en Tanzanie en 2017. Certains experts jugent néanmoins que l'exploitation de ce gisement ne serait pas rentable avant longtemps, car selon eux le marché mondial est récemment entré dans une période de surproduction en raison d'une utilisation plus économe et une mise sur le marché plus importante aux États-Unis, au Qatar et en Russie.

Extraction et purification

Pour l'utilisation à grande échelle, l'hélium est extrait par distillation fractionnée du gaz naturel, qui peut en contenir jusqu'à 7 %. Comme l'hélium a un point d'ébullition inférieur à tout autre corps, on utilise une basse température et une haute pression pour liquéfier presque tous les autres gaz (principalement le diazote et le méthane). L'hélium brut qui en résulte est alors purifié par exposition à des températures de plus en plus basses, ce qui fait précipiter pratiquement tout le diazote et autres gaz restants du mélange gazeux. On utilise enfin du charbon actif pour une étape finale de purification, pour obtenir ainsi de l'hélium d'une qualité de 99,995 %. La principale impureté de l'hélium de qualité A est le néon. Pour terminer la purification, la plupart de l'hélium produit est liquéfié, par un processus cryogénique. La liquéfaction est nécessaire pour les applications utilisant l'hélium liquide et permet d'ailleurs aux fournisseurs d'hélium de réduire le coût du transport à distance, car les plus grands réservoirs à hélium liquide ont une capacité au moins cinq fois plus grande que les remorques portant des cylindres d'hélium gazeux sous pression.

En 2005, environ 160 millions de mètres cubes d'hélium ont été extraits du gaz naturel, ou puisés dans les réserves, avec environ 83 % des États-Unis, 11 % d'Algérie et le reste principalement de Russie et de Pologne. Aux États-Unis, la plupart de l'hélium est extrait du gaz naturel de Hugoton et des gisements voisins du Kansas, de l'Oklahoma et du Texas.

Une autre méthode de production et de purification de l'hélium est la diffusion du gaz naturel brut à travers des membranes semi-perméables ou d'autres barrières.

Il est possible de faire la synthèse de l'hélium en bombardant du lithium ou du bore avec des protons de haute énergie, mais cela ne constitue pas une méthode économiquement viable de production.

Pourquoi l'hélium change-t-il la voix?

Pour comprendre les raisons de ce changement de son, rappelons le mécanisme à l'origine de la voix. Ce sont les vibrations des cordes vocales situées dans le larynx qui nous permettent d'émettre des sons. Celles-ci modulent le débit de l'air avant que la bouche ne serve de caisse de résonance.

Hélium et vitesse du son

L'hélium est moins dense que l'air ; ainsi, lorsqu'il remplace l'air dans les voies respiratoires et la cavité buccale, la vitesse du son devient plus élevée. Elle passe de 340 à 1.020 m.s-1. Les cordes vocales vibrent également plus vite et les sons produits se répercutent davantage à l'intérieur des voies respiratoires. Les sons qui sortent de la bouche présentent ainsi une fréquence plus élevée qu'à l'habitude. La voix devient plus aiguë.

Inversement, inspirer un gaz plus dense que l'air permet de modifier sa voix en la rendant plus grave.

Inhalation d'hélium : les risques

Il faut faire attention car, si l'expérience de l'inhalation d'hélium est drôle, elle doit rester de courte durée, et toujours se faire avec de l'hélium pur. C'est un gaz inerte, sans danger pour la santé. Mais celui que l'on trouve, par exemple dans les ballons gonflables à la foire, est souvent mélangé avec d'autres gaz qui eux, peuvent être dangereux.

Une inhalation excessive d'hélium, même pur, peut également comporter des risques. Le sang n'est alors plus suffisamment alimenté en dioxygène et cela peut provoquer des malaises, des évanouissements voire une asphyxie.

Donc : L'hélium est un gaz très léger, c’est la raison pour laquelle il est utilisé dans les ballons afin qu’ils flottent dans les airs. Ce gaz n’est ni inflammable, ni toxique. Nous ne pouvons ni le sentir, l’entendre, le voir ou le toucher. Lorsque vous inhalez de l’hélium, celui-ci prend la place de l’air dans vos poumons et, sans cet air chargé en oxygène, vous vous asphyxiez. Même une inhalation brève d’hélium peut entraîner la suffocation, sans que vous vous en aperceviez.
L'inhalation d'hélium peut provoquer la perte de conscience, l'asphyxie et même la mort!

Comment écarter le danger?

Il ne faut simplement pas inhaler ou ingérer de l’hélium ou tout autre gaz !
Des enfants suffoquent chaque année en inhalant de l’hélium par inadvertance. Il est dès lors essentiel d’informer les jeunes sur les dangers de l’inhalation de gaz. En effet, toute personne bien informée sur les dangers mortels de l’hélium, ne prendra plus le risque d’en inhaler.

_________________
avatar
Legolas.Vertefeuille

Messages : 19
Date d'inscription : 14/11/2017

Feuille de personnage
Puissance magique:
10/150  (10/150)
Force mentale:
5/100  (5/100)

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Revenir en haut

- Sujets similaires

 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum